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Sharp Cone-Broad Cone-Disk: Analytical Solutions in the Tunnel 

Mathematics Space to the Steady Navier-Stokes Equations in the 

Area of Boundary Layer for Incompressible Symmetric Flows 

Entrained by these Rotating Bodies 
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Independent Researcher, Zaporizhzhia, Ukraine 

Abstract: More than 150 years of history of efforts to solve the Navier-Stokes equation have clearly shown 

that, applying standard mathematical tools, it is possible to do this in only a small number of simple cases. 

Therefore, to solve such equations, we can try non-standard methods of mathematical modeling. In this case, the 

emphasis should be placed not on the mathematical accuracy of the proposed solutions, but on their 

correspondence to experimental data or solutions to the Navier-Stokes equations obtained by numerical methods. 

We believe that tunnel mathematics is such a method of mathematical modeling. Main theorem of tunnel 

mathematics allows us to reduce a system of the steady Navier-Stokes equations to simple ordinary differential 

equations that give solutions in planes parallel to the basic xy plane. Collecting such solutions, we finally obtain 

full 3D solution of a system of the steady Navier-Stokes equations. Approximate solutions for a system Sharp 

cone—Broad cone—Disk in the area of boundary layer can be obtained without use of specific software 

(including case of turbulent motion of fluid). We get solution for a rotating disk as a limit transition for a broad 

cone. If such solution will be similar with famous Karman`s solution for a rotating disk (we mean laminar flows), 

then we could conclude that our theory is successive. 
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1. Introduction 

Despite the widespread use of numerical methods for solving Navier-Stokes equations some researchers 

actively develop analytical ones. For example, Jaroslav Štigler obtained analytical formula for velocity 

distribution law in fluids moving in pipes [3]; Bo Zhao et al. solved analytically Navier-Stokes equations for 

unsteady flow entrained by rotating disk for low Reynolds numbers [4]; Biruk Alemayehu Petros solve Navier-

Stokes equations for incompressible fluids via local linearization of variable functions [5]; Taofiq O. Amoloye 

fulfilled analysis of an unsteady incompressible crossflow on a stationary circular cylinder using refined potential 

flow theory [13]. The nature of flows over rotating disks and cones is shown very well in papers by P. Henrik 

Alfredsson et al. [6] and Kentaro KATO et al. [14]. In these papers the steady Navier-Stokes equations in the 

laboratory frame of reference are transformed into set of ordinary differential equations (Karman`s solution). Also, 

theoretical aspects of flow over rotating disk study can be found in treatises by Landau [1] and Schlichting [2]. 

System Sharp cone—Broad cone—Disk is shown in Figure. 1. Flows over rotating disk and broad cone are similar 

due to large influence of centrifugal forces. 
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Figure-1. (a) Sharp cone: ψ — half-apex angle of cone, φ — azimuthal angle, θ — polar angle, 𝑽𝑹, 𝑽𝜽, 𝑽𝝋— 

velocity field components in modified spherical system of coordinates (we measure polar angle θ from xy 

plane, not from z axis, as usually), 𝒓𝟎— cone base and disk radius, Ω — angular velocity of rotation; the 

arrow indicates the direction of movement in the plane where the pressure is calculated. (b) Broad cone: h 

— cone height. (c) Disk: sketch of laminar flows under rotating disk in the laboratory frame. 

 

Since the time of Laplace, integral transforms have been used to solve partial differential equations 

(PDE). Today many integral transform exist although they differ from Laplace transform insignificantly. 

Especially integral transforms are helpful to solve PDE with constant coefficients [7, 8]. Also, some of them can 
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be successively applied to solve nonlinear PDE, however the number of terms in such equations remains as a rule 

small (about four [9]). This significantly complicates the use of integral transform to solve nonlinear Navier-

Stokes equations where only laplacians of velocity field components in spherical system of coordinates have at 

least five terms (almost all with variable coefficients, see (26) – (32)). 

 

Against this background, the use of tunnel mathematics can become an effective tool for solving 

nonlinear Navier-Stokes equations. Tunnel mathematics is a type of mathematical modeling when, according to 

certain laws and boundary conditions, we create components of the velocity field in a fluid. Of course, these 

created components are not the exact solutions of Navier-Stokes equations. However, adjusting the calibration 

coefficients we can fit them to as more as possible satisfy to experimental data. Main theorem of tunnel 

mathematics allows us to compute a pressure distribution field of incompressible fluid in the planes parallel to the 

basic xy plane (i.e. in the planes 𝑧 = 𝑐𝑜𝑛𝑠𝑡, so-called working platforms) [11]. Comparing obtained results with 

experimental data (such data already exist, for example, for certain configurations of Broad cone — Disk system 

[10]), we can estimate an accuracy of our modeling. 

 

Besides, use of tunnel mathematics has certain advantages because it allows to work with laplacians of 

functions very easily. For instance, following relations hold in tunnel mathematics: 

 

𝑃 = 𝑢(𝑥, 𝑦, 𝑧) + 𝑖𝑣(𝑥, 𝑦, 𝑧) + 𝑓𝑤(𝑥, 𝑦, 𝑧);        (1) 

 

where P is a spatial function of complex variable; functions u, v and w are the functions of real variables x, y, z; f 

is a special operator of tunnel mathematics. 

 

∆𝑢 = 0;            (2) 

∆𝑣 = 0;            (3) 

 

Relations (2) and (3) are ordinary ones for planar theory of complex variable [7, 11]. 

 

∆(𝑢𝑤) =
(𝑣𝑤)𝑥

𝑦3 −
(𝑦2−𝑥2)

𝑥𝑦
𝐶𝑖 − 𝐶𝑟;         (4) 

 

∆(𝑣𝑤) =
(𝑢𝑤)𝑦

𝑥3 −
(𝑦2−𝑥2)

𝑥𝑦
𝐶𝑟 + 𝐶𝑖;         (5) 

 

where constants 𝐶𝑟 and 𝐶𝑖, which can to depend on z coordinate, are included in the following relations: 

 
𝜕(𝑢𝑤)

𝜕𝑥
+ 𝑖

𝜕(𝑢𝑤)

𝜕𝑦
= (𝐶𝑟 + 𝑖𝐶𝑖)𝑥;         (6) 

 
𝜕(𝑣𝑤)

𝜕𝑥
+ 𝑖

𝜕(𝑣𝑤)

𝜕𝑦
= −(𝐶𝑟 + 𝑖𝐶𝑖)𝑦.         (7) 

 

In (2) – (5) ∆ =
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2  is the Laplace operator on the xy plane (on the working platforms). 

Relations (4) and (5) shows that on the working platforms Laplacians of functions linearly depend from the 

functions themselves which essentially simplifies the solution of differential equations. And since Laplacians are 

included in a large number of physical equations (for example, in the Schrodinger equation in quantum mechanics, 

the Lame equation in theory of elasticity, the eikonal equation in optics, etc.) it seems that tunnel mathematics has 

every chance taking its rightful place in theoretical physics. 
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2. Theory 

Theoretical Overview. We work in modified spherical system of coordinates; i.e. we measure polar angle θ 

from xy plane (not from z axis, as usually) (Fig. 1). So, we need carry out following transformation with ordinary 

spherical system of coordinates: 

𝑣𝜃 → −𝑣𝜃;  

𝜃 →
𝜋

2
− 𝜃;           (8) 

𝜕𝜃 → −𝜕𝜃.  

2.1. Main equations of tunnel mathematics 

Tunnel mathematics equations applied to the components of the vector velocity field in Cartesian coordinate 

system look like this [11]: 

 

𝜕𝑢

𝜕𝑥
+  

(𝑢𝑤)𝑦

(𝑥2+𝑦2)3 2⁄ (2 + (
𝑦

𝑥
)

2

) +
1

√𝑥2+𝑦2

𝜕(𝑣𝑤)

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
−  

(𝑣𝑤)𝑥

(𝑥2+𝑦2)3 2⁄ (2 + (
𝑥

𝑦
)

2

) −
1

√𝑥2+𝑦2

𝜕(𝑢𝑤)

𝜕𝑦
= − 

2𝑦

√𝑥2+𝑦2

𝜕𝑢

𝜕𝑧
+

1

𝑥
∙

𝜕(𝑢𝑤)

𝜕𝑧
+

1

𝑦
∙

𝜕(𝑣𝑤)

𝜕𝑧
−

2𝑦

(𝑥2+𝑦2)

𝜕(𝑣𝑤)

𝜕𝑧
;         (9) 

𝜕𝑣

𝜕𝑥
+ 

(𝑣𝑤)𝑦

(𝑥2+𝑦2)3 2⁄ −
1

√𝑥2+𝑦2

𝜕(𝑢𝑤)

𝜕𝑥
= −

𝜕𝑢

𝜕𝑦
+ 

(𝑢𝑤)𝑥

(𝑥2+𝑦2)3 2⁄ −
1

√𝑥2+𝑦2

𝜕(𝑣𝑤)

𝜕𝑦
= − 

2𝑦

√𝑥2+𝑦2

𝜕𝑣

𝜕𝑧
+

2𝑦

(𝑥2+𝑦2)

𝜕(𝑢𝑤)

𝜕𝑧
; (10) 

1

𝑥
∙

𝜕(𝑢𝑤)

𝜕𝑥
+

1

𝑦
∙

𝜕(𝑣𝑤)

𝜕𝑥
= −

𝑖

𝑦
∙

𝜕(𝑣𝑤)

𝜕𝑦
−

𝑖

𝑥
∙

𝜕(𝑢𝑤)

𝜕𝑦
= −

𝜕𝑢

𝜕𝑧
− 𝑖

𝜕𝑣

𝜕𝑧
+

𝑖

√𝑥2+𝑦2
∙

𝜕(𝑢𝑤)

𝜕𝑧
−

1

√𝑥2+𝑦2
∙

𝜕(𝑣𝑤)

𝜕𝑧
.  (11) 

Equations (9) and (10) have algebraic nature; equation (11) has complex nature. It is easy seen that at 𝑤 = 0 

equations (9) and (10) transform into ordinary planar Cauchy-Riemann conditions [7, 11]; and equation (11) 

disappears. 

Functions u, v, w in (1) – (7), (9) – (11) correspond to the vector velocity field components in Cartesian 

coordinate system. So, such relations connect the vector velocity field components in Cartesian and modified (8) 

spherical coordinate systems: 

𝑢 = 𝑣𝑥 = cos 𝜑 (𝑣𝑅 cos 𝜃 − 𝑣𝜃 sin 𝜃) − 𝑣𝜑 sin 𝜑 ;      (12) 

𝑣 = 𝑣𝑦 = sin 𝜑 (𝑣𝑅 cos 𝜃 − 𝑣𝜃 sin 𝜃) + 𝑣𝜑 cos 𝜑 ;      (13) 

𝑤 = 𝑣𝑧 = 𝑣𝑅 sin 𝜃 + 𝑣𝜃 cos 𝜃 ;         (14) 

There are also inverse transition formulas: 

𝑣𝑅 = cos 𝜃 (𝑢 cos 𝜑 + 𝑣 sin 𝜑) + 𝑤 sin 𝜃 ;       (15) 

𝑣𝜃 = − sin 𝜃 (𝑢 cos 𝜑 + 𝑣 sin 𝜑) + 𝑤 cos 𝜃 ;       (16) 

𝑣𝜑 = −𝑢 sin 𝜑 + 𝑣 cos 𝜑 ;         (17) 
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and ordinary transition formulas between Cartesian and modified (8) spherical coordinate systems hold: 

𝑥 = 𝑅 cos 𝜃 cos 𝜑 ;          (18) 

𝑦 = 𝑅 cos 𝜃 sin 𝜑 ;          (19) 

𝑧 = 𝑅 sin 𝜃.           (20) 

Recall that we work in modified (8) spherical system of coordinates; i.e. we measure polar angle θ from xy 

plane (not from z axis as usually) (Fig. 1). 

Using (12) – (14) we arrive to the following relations: 

(𝑢𝑤) = cos 𝜑 ((𝑣𝑅
2 − 𝑣𝜃

2)
sin 2𝜃

2
+ 𝑣𝑅𝑣𝜃 cos 2𝜃) − 𝑣𝜑 sin 𝜑 (𝑣𝑅 sin 𝜃 + 𝑣𝜃 cos 𝜃);   (21) 

(𝑣𝑤) = sin 𝜑 ((𝑣𝑅
2 − 𝑣𝜃

2)
sin 2𝜃

2
+ 𝑣𝑅𝑣𝜃 cos 2𝜃) + 𝑣𝜑 cos 𝜑 (𝑣𝑅 sin 𝜃 + 𝑣𝜃 cos 𝜃);   (22) 

For our Sharp cone — Broad cone — Disk system we will consider two limit case: 

1. Sharp cone: 𝑣𝑅 , 𝑣𝜃 ≫ 𝑣𝜑 (large streamwise flows). So, taking into account (18) and (19) we can obtain 

from (21) and (22) such simple condition for sharp cone: 

(𝑢𝑤)𝑦 = (𝑣𝑤)𝑥.          (23) 

2. Broad cone: 𝑣𝑅 , 𝑣𝜃 ≪ 𝑣𝜑 (large centrifugal flows). In the same way as the condition for a sharp cone was 

obtained, we arrive at the condition for a broad cone: 

(𝑢𝑤)𝑥 = −(𝑣𝑤)𝑦.          (24) 

We will get solution for a rotating disk as a limit transition for a broad cone. 

3. Steady Navier-Stokes equations 

In general tensor form the steady Navier-Stokes equations are represented as follows [12]: 

 

𝜌𝑣𝑘
𝜕𝑣𝑖

𝜕𝑥𝑘
= −

𝜕𝑃

𝜕𝑥𝑖
+ 𝜇 (

𝜕2𝑣𝑖

𝜕𝑥𝑘𝜕𝑥𝑘
+

1

3

𝜕

𝜕𝑥𝑖
(

𝜕𝑣𝑙

𝜕𝑥𝑙
)) + (

𝜕𝑣𝑖

𝜕𝑥𝑘
+

𝜕𝑣𝑘

𝜕𝑥𝑖
−

2

3
𝛿𝑖𝑘

𝜕𝑣𝑙

𝜕𝑥𝑙
) × (

𝜕𝜇

𝜕𝑥𝑘
) ;    (25) 

where 𝛿𝑖𝑘 is the Kronecker symbol: 𝛿𝑖𝑘 = {
1, 𝑖𝑓 𝑖 = 𝑘;
0, 𝑖𝑓 𝑖 ≠ 𝑘;

 

besides, 

 

𝜌 is a density of fluid; 

𝑣𝑖 is a ith component of vector velocity field; 

𝑃 is a pressure in fluid; 

𝜇 is a dynamic viscosity of fluid. 

 

Last term in (25) represent a tensor product. 
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For incompressible case the term corresponding to divergence of vector velocity field in (25) is zero; the 

dynamic viscosity 𝜇 is constant and last term is zero as well. 

 

So, Navier-Stokes equations (25) in modified (8) spherical polar coordinates assume such form for 

incompressible case: 

 

𝜌 (𝑣𝑅
𝜕𝑣𝑅

𝜕𝑅
+ 𝑣𝜃

𝜕𝑣𝑅

𝑅𝜕𝜃
−

(𝑣𝜃
2+𝑣𝜑

2 )

𝑅
) = −

𝜕𝑃

𝜕𝑅
+ 𝜇 (∆𝑣𝑅 −

2𝑣𝑅

𝑅2 −
2

𝑅2

𝜕𝑣𝜃

𝜕𝜃
+

2𝑣𝜃

𝑅2 tan 𝜃);    (26) 

 

𝜌 (𝑣𝑅
𝜕𝑣𝜃

𝜕𝑅
+ 𝑣𝜃

𝜕𝑣𝜃

𝑅𝜕𝜃
+

𝑣𝑅𝑣𝜃

𝑅
+

𝑣𝜑
2 tan 𝜃

𝑅
) = −

𝜕𝑃

𝑅𝜕𝜃
− 𝜇 (∆𝑣𝜃 −

2

𝑅2

𝜕𝑣𝑅

𝜕𝜃
+

𝑣𝜃

(𝑅 cos 𝜃)2);    (27) 

 

𝜌 (𝑣𝑅
𝜕𝑣𝜑

𝜕𝑅
+ 𝑣𝜃

𝜕𝑣𝜑

𝑅𝜕𝜃
+

𝑣𝑅𝑣𝜑

𝑅
−

𝑣𝜃𝑣𝜑 tan 𝜃

𝑅
) = 𝜇 (∆𝑣𝜑 −

𝑣𝜑

(𝑅 cos 𝜃)2);     (28) 

 
𝜕𝑣𝑅

𝜕𝑅
+

2𝑣𝑅

𝑅
+

𝜕𝑣𝜃

𝑅𝜕𝜃
−

𝑣𝜃 tan 𝜃

𝑅
= 0;         (29) 

 

where 

 

∆𝑣𝑅 =  
𝜕2𝑣𝑅

𝜕𝑅2 +
2

𝑅

𝜕𝑣𝑅

𝜕𝑅
+

1

𝑅2

𝜕2𝑣𝑅

𝜕𝜃2 −
tan 𝜃

𝑅2

𝜕𝑣𝑅

𝜕𝜃
;       (30) 

 

∆𝑣𝜃 =  −
𝜕2𝑣𝜃

𝜕𝑅2 −
2

𝑅

𝜕𝑣𝜃

𝜕𝑅
−

1

𝑅2

𝜕2𝑣𝜃

𝜕𝜃2 +
tan 𝜃

𝑅2

𝜕𝑣𝜃

𝜕𝜃
;       (31) 

 

∆𝑣𝜑 =  
𝜕2𝑣𝜑

𝜕𝑅2 +
2

𝑅

𝜕𝑣𝜑

𝜕𝑅
+

1

𝑅2

𝜕2𝑣𝜑

𝜕𝜃2 −
tan 𝜃

𝑅2

𝜕𝑣𝜑

𝜕𝜃
.       (32) 

 

Equations (26) – (28) are written without taking into account gravitational force; so, the pressure 𝑃 in that 

equations is a difference between actual pressure in some point and hydrostatic pressure in the same point. 

 

Flows over Sharp cone — Broad cone — Disk system are axisymmetric that is why in (26) – (32) all 

derivatives by the azimuthal angle φ are zero. 

 

Relation (29) represent the equation of continuity for incompressible case. 
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4. Result and Discussion 

4.1 Sharp cone 

4.1.1 Finding velocity components 

(𝑢𝑤) =
𝐴0

2𝑏2𝑎

𝑦(𝑥2+𝑦2)
exp [𝑧√𝑥2 + 𝑦2 (

4𝑥𝑦

(𝑥2+𝑦2)2 +
1

𝑥𝑦
)] ;      (33) 

(𝑣𝑤) =
𝐴0

2𝑏2𝑎

𝑥(𝑥2+𝑦2)
exp [𝑧√𝑥2 + 𝑦2 (

4𝑥𝑦

(𝑥2+𝑦2)2 +
1

𝑥𝑦
)] ;      (34) 

where 𝐴0, 𝑎, 𝑏 are the constants; [𝐴0] =
𝑚

𝑠𝑒𝑐
; [𝑎] = [𝑏] = 𝑚. 

Now we can construct the components of the vector velocity field in Cartesian coordinate system. In order to 

satisfy (23) we select the components of analytical functions [7] in following manner: 

𝑢 = 𝐴0
𝑥

𝑎
;           (35) 

𝑣 = 𝐴0
𝑦

𝑎
.           (36) 

It is easy seen that (2) and (3) are satisfied automatically. Then we obtain from (33) and (34) such relation for 

w: 

𝑤 = 𝐴0
(𝑎𝑏)2

𝑥𝑦(𝑥2+𝑦2)
exp [𝑧√𝑥2 + 𝑦2 (

4𝑥𝑦

(𝑥2+𝑦2)2 +
1

𝑥𝑦
)] ;      (37) 

Now using (15), (16), (18) – (20) we can obtain the components of the vector velocity field in modified (8) 

spherical coordinate system: 

𝑣𝑅 = 𝐴0 (
(𝑅 cos 𝜃)

𝑎
cos 𝜃 + sin 𝜃

2(𝑎𝑏)2

𝐴2(𝑅 cos 𝜃)4 exp[2𝐴1 𝑡𝑎𝑛 𝜃]) ;     (38) 

𝑣𝜃 = 𝐴0 (−
(𝑅 cos 𝜃)

𝑎
sin 𝜃 + cos 𝜃

2(𝑎𝑏)2

𝐴2(𝑅 cos 𝜃)4 exp[2𝐴1 𝑡𝑎𝑛 𝜃]) ;     (39) 

where 𝐴1 𝑎𝑛𝑑 𝐴2 are dimensionless constants (they depend on φ). 

We seek the solutions of Navier-Stokes equations in the area of boundary layer, that is why we need to impose 

the so called non-slip boundary conditions on (38) and (39): 

at 𝜃 = 𝜃𝑤 =
𝜋

2
− 𝜓 should be 𝑣𝑅 = 0 and 𝑣𝜃 = 0;       (40) 

where 𝜓 is the half-apex angle of cone (Fig. 1). 

In order to satisfy (40) the relations (38) and (39) must take such form: 

𝑣𝑅 = 𝐴0 (
(𝑅 cos 𝜃)

𝑎
cos 𝜃 +

sin 𝜃

(cos 𝜃)4

𝛾2
′

𝑅4 (
𝑅5𝛿2

′

𝑡𝑎𝑛 𝜃𝑤
)

𝛼

cos 𝜋𝛼) ;      (41) 

𝑣𝜃 = 𝐴0 (−
(𝑅 cos 𝜃)

𝑎
sin 𝜃 +

cos 𝜃

(cos 𝜃)4

𝛾2
′

𝑅4 (𝑅5𝛿2
′ 𝑡𝑎𝑛 𝜃𝑤)𝛼) ;      (42) 

where 

𝛼 =
𝑡𝑎𝑛 𝜃

𝑡𝑎𝑛 𝜃𝑤
;           (43) 
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𝛾2
′ =

2(𝑎𝑏)2

𝐴2
; [𝛾2

′ ] = 𝑚4;         (44) 

𝛿2
′ =

𝐴2(cos 𝜃𝑤)5

2(𝑎𝑏)2𝑎
; [𝛿2

′ ] = 𝑚−5;         (45) 

we keep the notations adopted in [12]. 

Using (17) – (19) and (35), (36) we arrive to such expression for 𝑣𝜑 component: 

𝑣𝜑 = −𝑢 sin 𝜑 + 𝑣 cos 𝜑 = 0.         (46) 

In other words, our model for a sharp cone assumes that the cone itself is at rest under the incident flow; i.e. 

we seem to be moving into a reference system coupled with a cone, while neglecting centrifugal forces (which is 

permissible for a sharp cone). 

In the Figs. 2 and 3 below the graphs for 𝑣𝑅 and 𝑣𝜃  components corresponding to (41) and (42) are shown. 

 

 

Figure-2. Graph for 𝒗𝑹 component in (41) at 𝝍 = 𝟏𝟎° (𝜽𝒘 = 𝟖𝟎° (𝟏. 𝟒 𝒓𝒂𝒅)) and 𝑨𝟎 = 𝟐𝟎𝟎 
𝒎

𝒔𝒆𝒄
. 

When constructing graphs in Figs. 2 and 3, we assume the values of the remaining constants as follows: 

𝑎 = 1000 𝑚;           (47) 

𝑏 = 0.001 𝑚;           (48) 

𝐴2 = 2 ∙ 106.           (49) 

What is striking in the figures is the step-by-step change in both components of velocity (similar to a quantum 

change) as you approach the apex of the cone. 
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Figure-3. Graph for 𝒗𝜽 component in (42) at 𝝍 = 𝟏𝟎° (𝜽𝒘 = 𝟖𝟎° (𝟏. 𝟒 𝒓𝒂𝒅)) and 𝑨𝟎 = 𝟐𝟎𝟎 
𝒎

𝒔𝒆𝒄
. 

4.1.2 Finding pressure 

Now we can check the equation of continuity for incompressible case. Substituting (41) and (42) in (29), we 

obtain such expression: 

𝜕𝑣𝑅

𝜕𝑅
+

2𝑣𝑅

𝑅
+

𝜕𝑣𝜃

𝑅𝜕𝜃
−

𝑣𝜃 tan 𝜃

𝑅
= 𝐴0 (

2

𝑎
+ 𝑅5(𝛼−1) sin 𝜃

(cos 𝜃)4 𝛾2
′ (𝛿2

′ (𝑡𝑎𝑛 𝜃𝑤)−2)𝛼𝛽) ;     (50) 

where 

𝛽 = (5𝛼 − 2) cos 𝜋𝛼 + 2 (𝑡𝑎𝑛 𝜃𝑤)2𝛼 ;        (51) 

Below in Fig. 4 the graph for 𝛽 is shown. 

 

Figure-4. The graph for 𝜷 in (51). The area of boundary layer is near 𝜶 = 𝟏. 
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By giving constants values indicated in (47) – (49) we can ensure that the expression (50) does not exceed 

the values of 𝑣𝑅 and 𝑣𝜃 . 

Now we consider the following combination of components (41) and (42): 

𝑣𝑅 𝑡𝑎𝑛 𝜃 + 𝑣𝜃 =  𝐴0
𝛾2

′

(𝑅 cos 𝜃)4 (𝑅5𝛿2
′ )𝛼(𝑡𝑎𝑛 𝜃𝑤)−𝛼𝛽1;      (52) 

where 

𝛽1 =
sin2 𝜃

cos 𝜃
cos 𝜋𝛼 + cos 𝜃 (𝑡𝑎𝑛 𝜃𝑤)2𝛼 ;        (53) 

Below in Fig. 5 the graph for 𝛽1 is shown. 

 

Figure-5. The graph for 𝜷𝟏 in (53). The area of boundary layer is near 𝜽 ≈ 𝟏. 𝟒. 

It is seen from Fig. 5 that we can assume that the expression 𝑣𝑅 𝑡𝑎𝑛 𝜃 + 𝑣𝜃  in (52) and its first and second 

derivatives are approximately equal to zero in the area of boundary layer (𝜃 ≈ 1.4). 

This will allow us to significantly simplify the solution of the Navier-Stokes equations in the area of 

boundary layer. 

Now we translate the Navier-Stokes equations (26) and (27) into the plane 

𝑧 = 𝑅 sin 𝜃 = 𝑐𝑜𝑛𝑠𝑡 = 0.5.         (54) 

Numerical results for solving the Navier-Stokes equations in the plane exist in the literature [15]. 

Equation (28) for our model of sharp cone disappears due to (46). 

The following relation applies in the plane (54): 

𝑑𝑅

𝑑𝜃
= −𝑅 cot 𝜃.          (55) 
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We use (55) to go from derivatives with respect to 𝜕𝜃 to derivatives with respect to 𝜕𝑅 in (26) and (27). Having 

performed this operation, we multiply equation (26) by 𝑡𝑎𝑛 𝜃 and add it to equation (27). Keeping in mind that 

expression (52), as well as its first and second derivatives, in the area of boundary layer are approximately equal 

to zero, we arrive at the following equation: 

𝜌 (
𝑣𝜃

𝑅
(𝑣𝑅 − 𝑣𝜃 𝑡𝑎𝑛 𝜃)) = 2 cot 2𝜃

𝜕𝑃

𝜕𝑅
− 𝜇 (

2𝑣𝑅

𝑅2 𝑡𝑎𝑛 𝜃 +
2 cot 𝜃

𝑅

𝜕

𝜕𝑅
(𝑣𝑅 − 𝑣𝜃 𝑡𝑎𝑛 𝜃) +

𝑣𝜃 cos 2𝜃

(𝑅 cos 𝜃)2) ;  (56) 

Performing integration (56) and taking into account the following approximate equalities (𝛼 ≈ 1 in the area 

of boundary layer) 

∫ 𝑅 log 𝑅 𝑑𝑅 ≈ 0;          (57) 

∫ 𝑅5𝛼−4 log 𝑅 𝑑𝑅 ≈ 0;          (58) 

we arrive at the final formula for in-plane pressure for a sharp cone: 

𝑃 =
1

2 cot 2𝜃
((𝜌𝑣𝜃 log

𝑅

𝐶
+ 𝜇 (

2 cot 𝜃

𝑅
−

1

sin 𝜃 cos 𝜃
(

1

𝑅
− (log

𝑅

𝐶
)

𝜕

𝜕𝑅
))) (𝑣𝑅 − 𝑣𝜃 𝑡𝑎𝑛 𝜃) −

𝜇

sin 𝜃 cos 𝜃
(

1

𝑅
−

(log
𝑅

𝐶
)

𝜕

𝜕𝑅
) 𝑣𝑅).           (59) 

In the Figs. 6 and 7 below the graphs for pressure corresponding to (59) are shown (when constructing graphs, 

we must substitute expression (54) into (59)). 

 

 

Figure-6. Graph for 𝑷 in (59) at 𝝍 = 𝟏𝟎° (𝜽𝒘 = 𝟖𝟎° (𝟏. 𝟒 𝒓𝒂𝒅)) and 𝑨𝟎 = 𝟐𝟎𝟎 
𝒎

𝒔𝒆𝒄
. 
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Figure-7. Graph for 𝑷 in (59) at 𝝍 = 𝟏𝟎° (𝜽𝒘 = 𝟖𝟎° (𝟏. 𝟒 𝒓𝒂𝒅)) and 𝑨𝟎 = 𝟐𝟎𝟎 
𝒎

𝒔𝒆𝒄
 (another view). 

Analyzing the graphs in Figs. 6 and 7 we must take into account that they should be shifted upward along the 

𝜃 axis by 1.4 rad. After this, the point 𝑅 ≈ 0.5 𝑚 lying on the wall of the cone will correspond to the angle 𝜃 =

1.4 𝑟𝑎𝑑, which corresponds to movement in the plane (54) (Fig. 1a). This means that formula (59) requires 

additional debugging. Also, it should be remembered that these graphs are accurate only in the area of boundary 

layer (𝜃 ≈ 1.4); and the pressure 𝑃 in (59) is a difference between actual pressure in some point and hydrostatic 

pressure in the same point, therefore it can take negative values. 

In addition to the constants (47) – (49) when constructing graphs, we also used the following: 

𝜌 = 1 
𝑘𝑔

𝑚3 ; (density of air at 𝑇 ≈ 300 𝐾, 𝑝 ≈ 105𝑃𝑎)      (60) 

𝜇 = 0.00001 𝑃𝑎 ∙ 𝑠𝑒𝑐;          (61) 

𝐶 = 10 𝑚.           (62) 

 

4.2 Broad cone 

4.2.1 Finding velocity components 

Using first equalities in (9) and (10) and condition (24) for broad cone ((𝑢𝑤)𝑥 = −(𝑣𝑤)𝑦) we find first 

derivatives of functions (uw) and (vw) by ∂x and ∂y: 

𝜕(𝑢𝑤)

𝜕𝑥
= −(𝑢𝑤) (

𝑥

𝑥2+𝑦2 +
𝑥

𝑦2 −
1

𝑥
) ;        (63) 

𝜕(𝑣𝑤)

𝜕𝑥
= −(𝑣𝑤) (

𝑥

𝑥2+𝑦2 +
𝑥

𝑦2 −
2

𝑥
) ;        (64) 

𝜕(𝑢𝑤)

𝜕𝑦
= −(𝑢𝑤) (

𝑦

𝑥2+𝑦2 +
𝑦

𝑥2 −
2

𝑦
) ;        (65) 

𝜕(𝑣𝑤)

𝜕𝑦
= −(𝑣𝑤) (

𝑦

𝑥2+𝑦2 +
𝑦

𝑥2 −
1

𝑦
) ;        (66) 
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Separately, we will focus on how to apply relation (11), which is the essence of the main theorem of tunnel 

mathematics, and thereby obtain derivatives of the indicated functions with respect to ∂z.  

First we apply the planar Laplacian operation to relation (11): 

∆ (
1

𝑥
∙

𝜕(𝑢𝑤)

𝜕𝑥
+

1

𝑦
∙

𝜕(𝑣𝑤)

𝜕𝑥
) = −

𝜕∆𝑢

𝜕𝑧
− ∆ (

1

√𝑥2+𝑦2
∙

𝜕(𝑣𝑤)

𝜕𝑧
).      (67) 

After this, using the harmonicity of function u (2), and the relations of tunnel mathematics for planar 

Laplacians (4) and (5), we obtain the required derivatives with respect to ∂z: 

𝜕(𝑢𝑤)

𝜕𝑧
= −(𝑢𝑤)

𝑥𝑦√𝑥2+𝑦2

𝛽3
(−𝛽2 +

𝑥2+𝑦2

(𝑢𝑤)
(𝐶𝑟 +

𝑦

𝑥
𝐶𝑖)) ;      (68) 

where 

𝛽2 = − (
𝑥2

𝑦2 + (1 +
𝑥2

𝑦2) (2 +
𝑥2

𝑦2)) +
2𝑥2

𝑥2+𝑦2 +
12(𝑥𝑦)2

(𝑥2+𝑦2)2 ;      (69) 

𝛽3 = (𝑥2 + 𝑦2)2 − 𝑥2 (4(𝑥2 + 𝑦2) − 𝑥2 (8 −
7𝑥2

𝑥2+𝑦2)) − (𝑥𝑦)3 (
(𝑦2−𝑥2)

𝑥𝑦

𝜕𝐶𝑟

𝜕𝑧
−

𝜕𝐶𝑖

𝜕𝑧
)

𝜕𝑧

𝜕(𝑢𝑤)
.  (70) 

In order to simplify our calculations, we will set the following condition in (70): 

(𝑦2−𝑥2)

𝑥𝑦

𝜕𝐶𝑟

𝜕𝑧
−

𝜕𝐶𝑖

𝜕𝑧
= 0.          (71) 

The easiest way to obtain an expression for 
𝜕(𝑣𝑤)

𝜕𝑧
 is to use (24) and (68): 

𝜕(𝑣𝑤)

𝜕𝑧
= −(𝑣𝑤)

𝑥𝑦√𝑥2+𝑦2

𝛽3
(−𝛽2 −

𝑥2+𝑦2

(𝑣𝑤)
(

𝑥

𝑦
𝐶𝑟 + 𝐶𝑖)) ;      (72) 

Now using (63) – (66), (68) and (72) we get expressions for required functions (uw) and (vw): 

(𝑢𝑤) = 𝐵0𝐵1
𝑥𝑦2

𝑥2+𝑦2

𝑏1
2

𝑎1𝑎2
2 exp[1 −

1

2
(

𝑥2+𝑦2

𝑥𝑦
)

2

+  𝑧𝑥𝑦√𝑥2 + 𝑦2 𝛽2

𝛽3
−

𝑥𝑦(𝑥2+𝑦2)
3/2

𝛽3
∫ (𝐶𝑟 +

𝑦

𝑥
𝐶𝑖)

𝑑𝑧

(𝑢𝑤)
] (73) 

(𝑣𝑤) = 𝐵0𝐵2
𝑥2𝑦

𝑥2+𝑦2

𝑏1
2

𝑎1
2𝑎2

exp[1 −
1

2
(

𝑥2+𝑦2

𝑥𝑦
)

2

+  𝑧𝑥𝑦√𝑥2 + 𝑦2 𝛽2

𝛽3
+

𝑥𝑦(𝑥2+𝑦2)
3/2

𝛽3
∫ (

𝑥

𝑦
𝐶𝑟 + 𝐶𝑖)

𝑑𝑧

(𝑣𝑤)
] (74) 

where 𝐵0 , 𝐵1, 𝐵2, 𝑎1, 𝑎2, 𝑏1 are the constants; [𝐵0] = [𝐵1] = [𝐵2] =
𝑚

𝑠𝑒𝑐
; [𝑎1] = [𝑎2] = [𝑏1] = 𝑚. 

Using obtained results, we can construct the components of the vector velocity field in Cartesian coordinate 

system. In order to satisfy (24) ((𝑢𝑤)𝑥 = −(𝑣𝑤)𝑦) we select from (73) and (74) the components of analytical 

functions [7] in following manner: 

𝑢 = −𝐵1
𝑦

𝑎2
𝑒−𝑧/𝑏2 ;          (75) 

𝑣 = 𝐵2
𝑥

𝑎1
𝑒−𝑧/𝑏2 ;          (76) 

where 𝑏2 is a constant. 
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It is easy seen that (2) and (3) are satisfied automatically. Besides, in (75) and (76) the following equalities for 

constants hold: 

𝐵1 = 𝐵2;  𝑎1 = 𝑎2.          (77) 

We also allowed the following equalities in (73) and (74): 

−
𝑥𝑦(𝑥2+𝑦2)

3/2

𝛽3
∫ (𝐶𝑟 +

𝑦

𝑥
𝐶𝑖)

𝑑𝑧

(𝑢𝑤)
=

𝑥𝑦(𝑥2+𝑦2)
3/2

𝛽3
∫ (

𝑥

𝑦
𝐶𝑟 + 𝐶𝑖)

𝑑𝑧

(𝑣𝑤)
= 𝑒−𝑧/𝑏2 .    (78) 

We did this in order to simplify our calculations and avoid encountering integral equations at this stage of 

research. In addition, it should be remembered that we can assign any functions, depending on z, to the constants 

𝐶𝑟 and 𝐶𝑖. 

Now we obtain from (73) and (74) such relation for w: 

𝑤 = 𝐵0
𝑥𝑦

𝑥2+𝑦2

𝑏1
2

𝑎1
2 exp [1 −

1

2
(

𝑥2+𝑦2

𝑥𝑦
)

2

+  𝑧𝑥𝑦√𝑥2 + 𝑦2 𝛽2

𝛽3
] ;      (79) 

where we assume the following equality for the constants: 

𝑏1
2 = 2𝑎1

2;           (80) 

Using (15) – (17) and (18) – (20) we can obtain the components of the vector velocity field in modified (8) 

spherical coordinate system: 

𝑣𝑅 = 2𝐵0𝐵3 sin 𝜃 exp [1 −
1

2
𝐵3

−2 + 𝐵3𝐵6 𝑡𝑎𝑛 𝜃] ;       (81) 

𝑣𝜃 = 2𝐵0𝐵3 cos 𝜃 exp [1 −
1

2
𝐵3

−2 + 𝐵3𝐵6 𝑡𝑎𝑛 𝜃] ;      (82) 

where the constants are assigned the following expressions: 

𝐵3 =
sin 2𝜑

2
;           (83) 

𝐵6 =
−𝐵4+2𝐵5(1+6(1−𝐵5))

1−𝐵5(4−𝐵5(8−7𝐵5))
;         (84) 

𝐵4 = cot2 𝜑 + (1 + cot2 𝜑)(2 + cot2 𝜑);       (85) 

𝐵5 = cos2 𝜑.           (86) 

It is seen from (81) and (82) that components 𝑣𝑅 and 𝑣𝜃  don`t depend on R. This is consequence of condition 

(71) for 𝛽3. 

𝑣𝜑 = 𝛺𝑅 cos 𝜃 exp [
𝑅

𝑏2
(sin 𝜃𝑤 − sin 𝜃)] ;       (87) 

where 𝛺 is the angular velocity, [𝛺] = 𝑟𝑎𝑑/𝑠𝑒𝑐; 𝜃𝑤 is the angle corresponding to the wall of cone; for a broad 

cone (Fig. 1b) we assume that 𝜃𝑤 = 10° = 0.174 𝑟𝑎𝑑 (𝜓 = 80°). 

Below in Figs. 8 – 10 we show graphs of the components of the vector velocity field in (81), (82) and (87). 
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Figure-8. Graph for 𝒗𝑹 component in (81) at 𝝍 = 𝟖𝟎° (𝜽𝒘 = 𝟏𝟎° (𝟎. 𝟏𝟕𝟒 𝒓𝒂𝒅)) and 𝑩𝟎 = 𝟐𝟎𝟎 
𝒎

𝒔𝒆𝒄
. 

 

Figure-9. Graph for 𝒗𝜽 component in (82) at 𝝍 = 𝟖𝟎° (𝜽𝒘 = 𝟏𝟎° (𝟎. 𝟏𝟕𝟒 𝒓𝒂𝒅)) and 𝑩𝟎 = 𝟐𝟎𝟎 
𝒎

𝒔𝒆𝒄
. 

When constructing graphs, we assume the values of the remaining constants as follows: 

𝐵3 = 0.3;           (88) 

𝐵6 = 0.5.           (89) 

As can be seen from Figs 8 and 9, the simplifications we made lead to the impossibility of meeting the non-

slip boundary conditions for a broad cone (especially, for 𝑣𝜃  component). However, as we will see below, this 

situation will not affect the fulfillment of similar conditions for a rotating disk. 
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Figure-10. Graph for 𝒗𝝋 component in (87) at 𝝍 = 𝟖𝟎° (𝜽𝒘 = 𝟏𝟎° (𝟎. 𝟏𝟕𝟒 𝒓𝒂𝒅)); 𝜴 = 𝟏𝟓𝟎 
𝒓𝒂𝒅

𝒔𝒆𝒄
 and 

𝒃𝟐 = 𝟏 𝒎. 

 

4.2.2 Finding pressure 

First we check the equation of continuity for incompressible case. Substituting (81) and (82) in (29), we 

obtain such expression: 

𝜕𝑣𝑅

𝜕𝑅
+

2𝑣𝑅

𝑅
+

𝜕𝑣𝜃

𝑅𝜕𝜃
−

𝑣𝜃 tan 𝜃

𝑅
=

𝐵3𝐵6

cos2 𝜃

𝑣𝜃

𝑅
;        (90) 

It is seen that the expression (90) does not exceed the values of 𝑣𝜃 . 

Translating equations (26) and (27) into the plane 

𝑧 = 𝑅 sin 𝜃 = 0.1          (91) 

and, taking advantage of the fact that the expressions (81) and (82) do not depend on R, we arrive at the 

following fairly simple equations: 

−𝜌
𝑣𝜑

2

𝑅
= −

𝜕𝑃

𝜕𝑅
;           (92) 

𝜌
𝑣𝜑

2 tan 𝜃

𝑅
=

𝜕𝑃

𝜕𝑅
cot 𝜃 − 𝜇

𝑣𝜃

(𝑅 cos 𝜃)2;         (93) 

When deriving equations (92) and (93), we also took into account the conditions for our model of broad 

cone: 𝑣𝑅 , 𝑣𝜃 ≪ 𝑣𝜑 (large centrifugal flows). 

Now we multiply equation (93) by tan 𝜃 and subtract equation (92) from it, after which we find the 

expression for the pressure in the plane (91): 

𝑃 =
1

2
(𝜌𝛺2 𝑏2

2(sin 𝜃𝑤−sin 𝜃)
exp [

2𝑅

𝑏2
(sin 𝜃𝑤 − sin 𝜃)] (𝑅 −

𝑏2

2(sin 𝜃𝑤−sin 𝜃)
) − 𝜇

𝑣𝑅

𝑅 cos2 𝜃
) ;    (94) 
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where the expression for 𝑣𝑅 in is taken from (81). 

Below in Fig. 11 we show graph of the pressure in (94): 

 

 

Figure-11. Graph for 𝑷 in (94) at 𝝍 = 𝟖𝟎° (𝜽𝒘 = 𝟏𝟎° (𝟎. 𝟏𝟕𝟒 𝒓𝒂𝒅)); 𝜴 = 𝟏𝟓𝟎 
𝒓𝒂𝒅

𝒔𝒆𝒄
 and 𝒃𝟐 = 𝟎. 𝟎𝟏 𝒎. 

When constructing graph, we assume the values of the remaining constants as follows: 

𝐵3 = −0.3;           (95) 

𝐵6 = 0.5.           (96) 

Values for 𝜌 and 𝜇 correspond to (60) and (61). 

It is seen from Fig. 11 that, unlike a sharp cone (Figs. 6 and 7), the pressure around a broad cone in a plane 

(91) increases smoothly and does not have sharp peaks. 

We can also use equation (28), which does not contain pressure due to the axial symmetry of the flow, to 

obtain a valuable relation characterizing the liquid or gas around a rotating broad cone. Substituting expressions 

(81), (82) and (87) into equation (28) we obtain the following equality: 

−𝜌𝑤(1 − sin 𝜃 sin 𝜃𝑤) = 𝜇 (
4 sin 𝜃𝑤

𝑅
+

(sin 𝜃𝑤−sin 𝜃)2

𝑏2
) ;      (97) 

where the expression for 𝑤 in is taken from (79). 

Relation (97) connects the density and viscosity of a liquid or gas around a rotating broad cone and is 

satisfied throughout the entire volume of the flow. This relation can be used to determine calibration coefficients 

𝑏2, 𝐵3, 𝐵6. 
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4.3 Disk 

4.3.1 Finding velocity components 

We get solution for a rotating disk as a limit transition for a broad cone (Fig. 1). To achieve this goal, we must 

introduce the following obvious transformations into the broad cone solutions (which is equivalent to passing to 

cylindrical coordinates): 

𝜃𝑤 → 0;           (98) 

𝜃 → −𝜃;           (99) 

𝑣𝑅 → 𝑣𝑅;          (100) 

𝑣𝜃 → 𝑣−𝜃;          (101) 

𝑣𝜑 → 𝑣𝜑;          (102) 

𝑅 cos 𝜃 → 𝑟;          (103) 

−Rsin 𝜃 → −𝑧;         (104) 

𝑅2 = 𝑟2 + (−𝑧)2 = 𝑟2 + 𝑧2;        (105) 

𝑣𝑟 = 𝑣𝑅 cos 𝜃 + 𝑣−𝜃 sin 𝜃 ;        (106) 

−𝑣𝑧 = −𝑣𝑅 sin 𝜃 + 𝑣−𝜃 cos 𝜃 ;        (107) 

Substituting relations (81) and (82) for a broad cone into relations (106) and (107) for a disk we obtain 

expressions for 𝑣𝑟  and −𝑣𝑧 components of the fluid vector velocity field for a rotating disk in cylindrical system 

of coordinates: 

𝑣𝑟 = 2𝐵0𝐵3
𝑟𝑧

𝑟2+𝑧2 exp [1 −
1

2
𝐵3

−2 +  𝐵3𝐵6
𝑧

𝑟
] (1 + exp [−2 𝐵3𝐵6

𝑧

𝑟
]) ;   (108) 

−𝑣𝑧 = −2𝐵0𝐵3
𝑧2

𝑟2+𝑧2 exp [1 −
1

2
𝐵3

−2 +  𝐵3𝐵6
𝑧

𝑟
] (1 − (

𝑟

𝑧
)

2

exp [−2 𝐵3𝐵6
𝑧

𝑟
]) ;  (109) 

Substituting relations (98) and (103) into (87) we obtain expressions for 𝑣𝜑 component: 

𝑣𝜑 = 𝛺𝑟𝑒−𝑧/𝑏2 ;         (110) 

Below in Figs. 12 – 15 we show graphs of the components of the vector velocity field in (108) – (110). 

When constructing graphs in Figs. 12 – 15, we assume the values of the remaining constants as follows: 

𝐵3 = {
0.3 𝑓𝑜𝑟 𝑣𝑟  𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡;

−0.3 𝑓𝑜𝑟 −𝑣𝑧 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡;
       (111) 

𝐵6 = 0.5.          (112) 

It is seen from Figs. 12 – 15 that the non-slip boundary conditions for a rotating disk are fulfilled. 
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Figure-12. Graph for 𝒗𝒓 component of the fluid vector velocity field for a rotating disk in (108) at 

𝑩𝟎 = 𝟐𝟎𝟎 
𝒎

𝒔𝒆𝒄
. 

 

 

Figure-13. Graph for −𝒗𝒛 component of the fluid vector velocity field for a rotating disk in (109) at 

𝑩𝟎 = 𝟐𝟎𝟎 
𝒎

𝒔𝒆𝒄
. 
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Figure-14. Graph for −𝒗𝒛 component of the fluid vector velocity field for a rotating disk in (109) at 

𝑩𝟎 = 𝟐𝟎𝟎 
𝒎

𝒔𝒆𝒄
 (another view). 

 

 

Figure-15. Graph for 𝒗𝝋 component of the fluid vector velocity field for a rotating disk in (110) at 𝜴 =

𝟐𝟎𝟎 
𝒓𝒂𝒅

𝒔𝒆𝒄
 and 𝒃𝟐 = 𝟏 𝒎. 

If our solutions are similar to the famous Karman`s solutions for laminar flow entrained by a rotating disk, 

then we will consider our theory to be somewhat successful. Below in Fig. 16 Karman's solution is given. 
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Figure-16. Solution to the problem for an infinite rotating disk using numerical methods in [1]. The 

function F corresponds to the radial velocity 𝒗𝒓, the function G to the azimuthal velocity 𝒗𝝋 and the 

function H to the axial velocity 𝒗𝒛 (here it is assumed that the z-axis is directed upward, in contrast to our 

Fig.1). 

 

Functions in Fig. 16 are the numerical solutions to the following system of ordinary differential equations, to 

which the Navier-Stokes equations were reduced: 

𝐹2 − 𝐺2 + 𝐹′𝐻 = 𝐹′′;         (113) 

2𝐹𝐺 + 𝐺′𝐻 = 𝐺′′;         (114) 

𝐻𝐻′ = 𝑃′ + 𝐻′′;         (115) 

2𝐹 + 𝐻′ = 0;          (116) 

with such boundary conditions: 

𝐹 = 0, 𝐺 = 1, 𝐻 = 0 𝑎𝑡 𝑧1 = 0;        (117) 

𝐹 = 0, 𝐺 = 0 𝑎𝑡 𝑧1 = ∞.        (118) 

Comparing graphs in Figs. 12 – 15 (at 𝑟 = 𝑐𝑜𝑛𝑠𝑡) with corresponding functions in Fig 16, we see that solutions 

for 𝑣𝑟  and 𝑣𝜑 components obtained in tunnel mathematics space are similar to the Karman`s solutions. For the 

axial components 𝑣𝑧, significant differences are observed. To explain these discrepancies, we must remember that 

in the Karman`s model the disk is considered to be infinite, but we consider the disk to have a finite radius. For a 

disk of finite radius, the axial velocity at infinity never tends to any constant value; it rather tends to zero, 

remaining non-zero and directed towards the disk in a narrow funnel around the axis of the disk. It is precisely 

this picture of physical phenomena that corresponds to the solution for the axial component in Figs. 13 and 14. 
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4.3.2 Finding pressure 

Using (98) – (105) we transform expression (94) for pressure into one that works for a rotating disk: 

𝑃 =
𝜌𝛺2𝑏2

4

(𝑟2+𝑧2)

𝑧
exp [

2𝑧

𝑏2
] (1 −

𝑏2

2𝑧
) − 𝜇𝐵0𝐵3

(−𝑧)

𝑟2 exp [1 −
1

2
𝐵3

−2 +  𝐵3𝐵6
(−𝑧)

𝑟
].  (119) 

Below in Fig. 17 we show graph of the pressure in (119) near the surface of the disk (𝑧 = 0.001 𝑚): 

 

Figure-17. Graph for 𝑷 in (119) at 𝜴 = 𝟐𝟎𝟎 
𝒓𝒂𝒅

𝒔𝒆𝒄
, 𝑩𝟎 = 𝟐𝟎𝟎 

𝒎

𝒔𝒆𝒄
 and 𝒃𝟐 = 𝟎. 𝟎𝟎𝟏 𝒎. 

The remaining constants correspond to those established in (60), (61), (95) and (96). 

Relation (97) for a rotating disk is as follows: 

−𝜌𝑤′ =
𝜇

𝑏2

𝑧2

(𝑟2+𝑧2)
;         (120) 

where 

𝑤′ = 2𝐵0𝐵3 exp [1 −
1

2
𝐵3

−2 +  𝐵3𝐵6
𝑧

𝑟
].       (121) 

 

5. Conclusion 

We have partially succeeded in simulating the Karman`s solution for laminar flow entrained by a rotating disk. 

For the radial and azimuthal velocity components the coincidence is quite good. Significant differences are 

observed for the axial velocity component. This is due to the fact that the methods of tunnel mathematics are 

primarily aimed at obtaining solutions that correspond to the actually observed picture of physical phenomena; 

mathematical accuracy is relegated to the background. The resulting formulas for calculating the pressure in flows 

entrained by a sharp cone, a broad cone and a disk are quite simple and easy to use, but require experimental 

confirmation. Our model shows that for a sharp cone near the apex there is a step change in the velocity 
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components, reminiscent of quantization, due to which the flow near the apex of the sharp cone can be unstable. 

We believe that the methods of tunnel mathematics can be applied not only to the dynamics of liquids or gases, 

but in general to any area of physics where it is necessary to solve equations containing Laplacians. 
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